INFO I201
 Sample Midterm II

Not to be collected.

Q1. Let $A=\mathbb{Z}$ (the set of integers), $B=\{0,1\}$.
(a) Find $A \cap B, B-A, A \cup B$.
(b) Find $\mathcal{P}(B)$ (the power set of B).
(c) List two elements in $\mathcal{P}(A)$?
(d) Find $\mathcal{P}(A) \cap B$.
(e) List 4 elements in the set $A \times B$?

Q2. Let \mathcal{L} be a first order language with one unary predicate symbol S, one binary predicate symbol T, and one binary function symbol P. Consider the formulas

- $\phi_{1}=\forall x \forall z[(x \neq z) \longrightarrow \exists y(\neg(T(x, y) \wedge T(z, y)))]$
- $\phi_{2}=\forall x \forall y \exists z[z \neq P(x, P(x, y))]$
- $\phi_{3}=\forall x[\forall z(\exists y(T(x, y) \longrightarrow T(z, y)) \wedge S(x)) \vee T(y, z)]$

Determine the free and bound occurrences of all variables in $\phi_{1} \cdot \phi_{2}$, and ϕ_{3}.
Q3. (i) Let A, B and C be sets. Show that $(A-B)-C \subseteq A-C$.
(ii) Let A, B and C be sets. Prove or disprove: $A \cap C=B-C$ implies that $A=B$.
(iii) Let A, B and C be sets. Prove or disprove: $A-C \neq B \cap C$ implies that $A \neq B$.

Q4. Consider a first order language \mathcal{L} that consists of two unary predicate symbols P and Q and one binary predicate symbol S. Also consider the following formulas in this language:

- $\phi_{1} \equiv \forall y \exists x S(y, x) \wedge \exists x \forall y S(x, y)$
- $\phi_{2} \equiv(\exists x P(x) \wedge \exists x Q(x)) \longrightarrow \exists x(P(x) \wedge Q(x))$

Recall that a model M is a pair $M=(U, I)$, let $U=\{a, b, c, d\}$. Find one model $M_{1}=\left(U, I_{1}\right)$ making ϕ_{1} true and another model $M_{2}=\left(U, I_{2}\right)$ making ϕ_{2} false. Be precise in your reasoning and explain your answer.

Q5. Consider a first order language \mathcal{L} that consists of one unary predicate symbol Q. Let ϕ be the formula:

$$
\forall x \forall y \forall z[(Q(x) \wedge Q(y) \wedge Q(z)) \longrightarrow((z=y) \vee(z=x) \vee(x=y))]
$$

(i) Let $U=\{a, b, c, d\}$ and $I(Q)=\{a, b\}$. Is ϕ valid in this model?
(ii) Let $U^{\prime}=\{a, b, c\}$ and $I^{\prime}(Q)=\{a\}$. Is ϕ valid in this model?

