INFO I201 Sample Midterm II

Not to be collected.

- **Q1.** Let $A = \mathbb{Z}$ (the set of integers), $B = \{0, 1\}$.
 - (a) Find $A \cap B, B A, A \cup B$.
 - (b) Find $\mathcal{P}(B)$ (the power set of B).
 - (c) List two elements in $\mathcal{P}(A)$?
 - (d) Find $\mathcal{P}(A) \cap B$.
 - (e) List 4 elements in the set $A \times B$?
- **Q2.** Let \mathcal{L} be a first order language with one unary predicate symbol S, one binary predicate symbol T, and one binary function symbol P. Consider the formulas
 - $\phi_1 = \forall x \forall z [(x \neq z) \longrightarrow \exists y (\neg (T(x, y) \land T(z, y)))]$
 - $\phi_2 = \forall x \forall y \exists z [z \neq P(x, P(x, y))]$
 - $\phi_3 = \forall x [\forall z (\exists y (T(x, y) \longrightarrow T(z, y)) \land S(x)) \lor T(y, z)]$

Determine the free and bound occurrences of all variables in $\phi_1.\phi_2$, and ϕ_3 .

- **Q3.** (i) Let A, B and C be sets. Show that $(A B) C \subseteq A C$.
 - (ii) Let A, B and C be sets. Prove or disprove: $A \cap C = B C$ implies that A = B.
 - (iii) Let A, B and C be sets. Prove or disprove: $A C \neq B \cap C$ implies that $A \neq B$.
- **Q4.** Consider a first order language \mathcal{L} that consists of two unary predicate symbols P and Q and one binary predicate symbol S. Also consider the following formulas in this language:
 - $\phi_1 \equiv \forall y \exists x S(y, x) \land \exists x \forall y S(x, y)$
 - $\phi_2 \equiv (\exists x P(x) \land \exists x Q(x)) \longrightarrow \exists x (P(x) \land Q(x))$

Recall that a model M is a pair M = (U, I), let $U = \{a, b, c, d\}$. Find one model $M_1 = (U, I_1)$ making ϕ_1 true and another model $M_2 = (U, I_2)$ making ϕ_2 false. Be precise in your reasoning and explain your answer.

Q5. Consider a first order language \mathcal{L} that consists of one unary predicate symbol Q. Let ϕ be the formula:

$$\forall x \forall y \forall z [(Q(x) \land Q(y) \land Q(z)) \longrightarrow ((z = y) \lor (z = x) \lor (x = y))]$$

- (i) Let $U = \{a, b, c, d\}$ and $I(Q) = \{a, b\}$. Is ϕ valid in this model?
- (ii) Let $U' = \{a, b, c\}$ and $I'(Q) = \{a\}$. Is ϕ valid in this model?